skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Blackman, Eric G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Complex multiscale flows associated with instabilities and turbulence are commonly induced under high-energy density (HED) conditions, but accurate measurement of their transport properties has been challenging. x-ray photon correlation spectroscopy (XPCS) with coherent xx-ray sources can, in principle, probe material dynamics to infer transport properties using time autocorrelation of density fluctuations. Here we develop a theoretical framework for utilizing XPCS to study material diffusivity in multiscale flows. We extend single-scale shear flow theories to broadband flows using a multiscale analysis that captures shear and diffusion dynamics. Our theory is validated with simulated XPCS for Brownian particles advected in multiscale flows. We demonstrate the versatility of the method over several orders of magnitude in timescale using sequential-pulse XPCS, single-pulse xx-ray speckle visibility spectroscopy (XSVS), and double-pulse XSVS. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Free, publicly-accessible full text available November 1, 2025
  3. Abstract We report superluminal jet motion with an apparent speed ofβapp= 1.65 ± 0.57 in the radio-quiet (RQ) low-ionization nuclear emission-line region (LINER) galaxy KISSR 872. This result comes from two-epoch phase-referenced very long baseline interferometry observations at 5 GHz. The detection of bulk relativistic motion in the jet of this extremely radio-faint active galactic nucleus (AGN), with a total 1.4 GHz flux density of 5 mJy in the 5.″4 resolution Very Large Array FIRST survey image and 1.5 mJy in the ∼5 mas resolution Very Long Baseline Array image, is the first of its kind in an RQ LINER galaxy. The presence of relativistic jets in lower accretion rate objects like KISSR 872, with an Eddington ratio of 0.04, reveals that even RQ AGN can harbor relativistic jets and provides evidence of their universality over a wide range of accretion powers. 
    more » « less
  4. ABSTRACT The spin evolution of main-sequence stars has long been of interest for basic stellar evolution, stellar ageing, stellar activity, and consequent influence on companion planets. Observations of older-than-solar late-type main-sequence stars have been interpreted to imply that a change from a dipole-dominated magnetic field to one with more prominent higher multipoles might be necessary to account for the data. The spin-down models that lead to this inference are essentially tuned to the Sun. Here, we take a different approach that considers individual stars as fixed points rather than just the Sun. We use a time-dependent theoretical model to solve for the spin evolution of low-mass main-sequence stars that includes a Parker-type wind and a time-evolving magnetic field coupled to the spin. Because the wind is exponentially sensitive to the stellar mass over radius and the coronal base temperature, the use of each observed star as a separate fixed point is more appropriate and, in turn, produces a set of solution curves that produces a solution envelope rather than a simple line. This envelope of solution curves, unlike a single line fit, is consistent with the data and does not unambiguously require a modal transition in the magnetic field to explain it. 
    more » « less
  5. Abstract Earth’s magnetic field was in a highly unusual state when macroscopic animals of the Ediacara Fauna diversified and thrived. Any connection between these events is tantalizing but unclear. Here, we present single crystal paleointensity data from 2054 and 591 Ma pyroxenites and gabbros that define a dramatic intensity decline, from a strong Proterozoic field like that of today, to an Ediacaran value 30 times weaker. The latter is the weakest time-averaged value known to date and together with other robust paleointensity estimates indicate that Ediacaran ultra-low field strengths lasted for at least 26 million years. This interval of ultra-weak magnetic fields overlaps temporally with atmospheric and oceanic oxygenation inferred from numerous geochemical proxies. This concurrence raises the question of whether enhanced H ion loss in a reduced magnetic field contributed to the oxygenation, ultimately allowing diversification of macroscopic and mobile animals of the Ediacara Fauna. 
    more » « less
  6. ABSTRACT The shear-current effect (SCE) of mean-field dynamo theory refers to the combination of a shear flow and a turbulent coefficient β21 with a favourable negative sign for exponential mean-field growth, rather than positive for diffusion. There have been long-standing disagreements among theoretical calculations and comparisons of theory with numerical experiments as to the sign of kinetic ($$\beta ^u_{21}$$) and magnetic ($$\beta ^b_{21}$$) contributions. To resolve these discrepancies, we combine an analytical approach with simulations, and show that unlike $$\beta ^b_{21}$$, the kinetic SCE $$\beta ^u_{21}$$ has a strong dependence on the kinetic energy spectral index and can transit from positive to negative values at $$\mathcal {O}(10)$$ Reynolds numbers if the spectrum is not too steep. Conversely, $$\beta ^b_{21}$$ is always negative regardless of the spectral index and Reynolds numbers. For very steep energy spectra, the positive $$\beta ^u_{21}$$ can dominate even at energy equipartition urms ≃ brms, resulting in a positive total β21 even though $$\beta ^b_{21}\lt 0$$. Our findings bridge the gap between the seemingly contradictory results from the second-order-correlation approximation versus the spectral-τ closure, for which opposite signs for $$\beta ^u_{21}$$ have been reported, with the same sign for $$\beta ^b_{21}\lt 0$$. The results also offer an explanation for the simulations that find $$\beta ^u_{21}\gt 0$$ and an inconclusive overall sign of β21 for $$\mathcal {O}(10)$$ Reynolds numbers. The transient behaviour of $$\beta ^u_{21}$$ is demonstrated using the kinematic test-field method. We compute dynamo growth rates for cases with or without rotation, and discuss opportunities for further work. 
    more » « less